Chapter 6
List of other ground-motion models

Published ground-motion models for the prediction of PGA and/or response spectral ordinates that were derived by methods other than regression analysis on strong-motion data are listed below in chronological order.

Table 6.1: GMPEs derived based on simulated ground motions, often the stochastic method



Herrmann and Goertz (1981)

Eastern North America

Faccioli (1983)

Italy

Herrmann and Nuttli (1984) & Nuttli and Herrmann (1987)

Eastern North America

Boore and Atkinson (1987) and Atkinson and Boore (1990)

Eastern North America

Toro and McGuire (1987)

Eastern North America

Electric Power Research Institute (1988)

Eastern North America

Boore and Joyner (1991)

Eastern North America

Bungum et al. (1992)

Intraplate regions

Midorikawa (1993b)

Japan

Electric Power Research Institute (1993b)

Central and eastern USA

Savy et al. (1993)

Central and eastern USA

Atkinson and Boore (1995) & Atkinson and Boore (1997a)

Eastern North America

Winter (1995)

United Kingdom

Frankel et al. (1996) & Electric Power Research Institute (2004, Appendix B)

Central and eastern USA

Jonathan (1996)

Southern Africa

Atkinson and Boore (1997b)

Cascadia subduction zone

Hwang and Huo (1997)

Eastern USA

Ólafsson and Sigbjörnsson (1999)

Iceland

Atkinson and Silva (2000)

California

Somerville et al. (2001)

Central and eastern USA

Toro and Silva (2001)

Central USA

Balendra et al. (2002)

Singapore

Gregor et al. (2002b)

Cascadia subduction zone

Silva et al. (2002)

Central and eastern USA

Toro (2002)

Central and eastern USA

Megawati et al. (2003)

Sumatran subduction zone

Electric Power Research Institute (2004) (model clusters)

Central and eastern USA

Iyengar and Raghu Kanth (2004)

Peninsular India

Zheng and Wong (2004)

Southern China

Megawati et al. (2005)

Sumatran subduction zone

Motazedian and Atkinson (2005)

Puerto Rico

Nath et al. (2005b,a)

Sikkim Himalaya

Yun and Park (2005) & Yun (2006)

Korea

Atkinson and Boore (2006)

Eastern North America

Böse (2006)

Marmara, Turkey

Collins et al. (2006)

Intermountain West, USA

Raghu Kanth and Iyengar (20062007)

Peninsular India

Megawati (2007)

Hong Kong

Tuluka (2007)

African Western Rift Valley

Carvalho (2008)

Portugal

Jin et al. (2008)1

Fujian region, China

Liang et al. (2008)

Southwest Western Australia

Sokolov et al. (2008)

Vrancea, Romania

Atkinson and Macias (2009)

Cascadia subduction zone

Kang and Jin (2009)2

Sichuan region, China

Nath et al. (2009)

Guwahati, NE India

Somerville et al. (2009b,a)

Australia

Hamzehloo and Bahoosh (2010)

Tehran region, Iran

Megawati and Pan (2010)

Sumatran subduction zone

National Disaster Management Authority (2010)

Separate models for 7 regions of India

Deif et al. (2011)

Aswan area, Egypt

Allen (2012)

Southeastern Australia

Hamzehloo and Mahood (2012)

East central Iran

Nath et al. (2012)

Shillong region, India

Anbazhagan et al. (2013)3

Himalaya

Douglas et al. (2013)

Geothermally-induced events

Joshi et al. (2013)

Kutch region, India

Rietbrock et al. (2013)

United Kingdom

Yazdani and Kowsari (2013)

Northern Iran

Bora et al. (2014)

Europe and Middle East

Harbindu et al. (2014)

Garhwal Himalaya, India

Raghukanth and Kavitha (2014)

India (active regions)

Bora et al. (2015)

Europe and Middle East

Cauzzi et al. (2015a)

Switzerland (Foreland and Alps)

Drouet and Cotton (2015) & Drouet (2017)

French Alps

Pacific Earthquake Engineering Research Center (2015)

Central and eastern North America

Wong et al. (2015)

Hawaii

Yenier (2015) and Yenier and Atkinson (2015b)

Central and eastern North America

Adhikari and Nath (2016)

Darjeeling-Sikkim Himalaya, India

Bommer et al. (2016)

Groningen, Netherlands (induced seismicity)

Yazdani et al. (2016)

Alborz, Iran

Bommer et al. (2017)

Groningen, Netherlands (induced seismicity)



Table 6.2: Complete (source, path and site terms) stochastic models that could be used within the stochastic method (e.g. Boore2003)


De Natale et al. (1988) Campi Flegrei, Italy
Atkinson (1996) Cascadia
Atkinson and Silva (1997) California
Gusev et al. (1997) Kamchatka
Sokolov (1997) Northern Caucasus
Sokolov (1998) Caucasus
Raoof et al. (1999) Southern California
Malagnini and Herrmann (2000) Umbria-Marche, Italy
Malagnini et al. (2000a) Apennines, Italy
Malagnini et al. (2000b) Central Europe
Sokolov et al. (2000) Taiwan
Akinci et al. (2001) Erzincan, Turkey
Parvez et al. (2001) Himalaya
Junn et al. (2002) South Korea
Malagnini et al. (2002) Northeastern Italy
Bay et al. (2003) Switzerland
Singh et al. (2003) India
Bodin et al. (2004) Kachchh basin, India
Jeon and Herrmann (2004) Utah and Yellowstone, USA
Halldorsson and Papageorgiou (2005)Intraplate and interplate
Scognamiglio et al. (2005) Eastern Sicily, Italy
Sokolov et al. (2005) Vrancea, Romania
Akinci et al. (2006) Marmara, Turkey
Allen et al. (2006) Southwest Western Australia
Chung (2006) Southwestern Taiwan
Morasca et al. (2006) Western Alps
Malagnini et al. (2007) San Francisco, USA
Meirova et al. (2008) Israel
Zafarani et al. (2008) Iran
Edwards and Rietbrock (2009) Kanto, Tokai and Chubu regions, Japan
Hao and Gaull (2009) Perth, Australia
D’Amico et al. (2012) Taiwan
Òlafsson and Sigbjörnsson (2012) Iceland
Zafarani and Soghrat (2012) Zagros, Iran
Akinci et al. (2013) Western Turkey
Edwards and Fäh (2013) Switzerland (Foreland and Alps)
Akinci et al. (2014) Lake Van region, Turkey
Bernal et al. (2014) Colombia
Galluzzo et al. (2016) Campi Flegrei
Pacific Earthquake Engineering Research Center (2015)Central and eastern North America
Yenier and Atkinson (2015a)California
Pacor et al. (2016) L’Aquila region, Italy
Tao et al. (2016) Sichuan and Yunnan regions, SW China


Table 6.3: GMPEs derived using the hybrid stochastic-empirical method (e.g. Campbell2003b)


Atkinson (2001) Eastern North America
Abrahamson and Silva (2002) Central and eastern USA
Campbell (2003b) Eastern North America
Atkinson (2005) Cascadia
Tavakoli and Pezeshk (2005) Eastern North America
Douglas et al. (2006) Southern Norway
Douglas et al. (2006) Southern Spain
Campbell (2007) Central and eastern USA
Pezeshk et al. (2011) Eastern North America
Pacific Earthquake Engineering Research Center (2015)Central and eastern North America
Shahjouei and Pezeshk (2016) Central and eastern North America


Table 6.4: GMPEs derived by converting equations for the prediction of macroseismic intensity to the prediction of PGA and/or response spectral ordinates


Båth (1975) Worldwide
Battis (1981) Eastern North America
Hasegawa et al. (1981) Canada
Ben-Menahem et al. (1982) Israel
Gaull et al. (1990) Australia (NE and W and SE)
Huo et al. (1992) China
Malkawi and Fahmi (1996) Jordan
Al-Homoud and Fandi Amrat (1998)Jordan and Israel
Nguyen and Tran (1999) Vietnam


Table 6.5: GMPEs derived using the referenced-empirical method (e.g. Atkinson2008) that adjusts coefficients of published GMPEs for one region to provide a better match to observations from another



Dost et al. (2004)

Netherlands

Bommer et al. (2006)

El Salvador

Atkinson (2008)

Eastern North America

Scasserra et al. (2009)

Italy

Atkinson (20092010)

Hawaii

Gupta (2010)

Indo-Burmese subduction zone

Lin et al. (2011a)

Taiwan

Bourne et al. (2015)

Groningen, Netherlands

Hassani and Atkinson (2015)

Eastern North America

Pacific Earthquake Engineering Research Center (2015)

Central and eastern North America

Vuorinen et al. (2015)

Fennoscandian shield

Gülerce et al. (2016)

Turkey



Table 6.6: Studies where one or more coefficients of previously published GMPEs are altered following additional analysis (completely new GMPEs are not derived in these studies)



Twesigomwe (1997)

Modifies coefficients of Krinitzsky et al. (1988)

Lee et al. (2000)

New σ for Abrahamson and Silva (1997), Boore et al. (1997), Campbell (1997), Sadigh et al. (1997) and Lee and Trifunac (1995)

Eberhart-Phillips and McVerry (2003)

New terms for McVerry et al. (2000)

Petersen et al. (2004)

Modified distance dependence of Youngs et al. (1997) for > 200km

Chen (2008) & Chen and Faccioli (2013)

New σ for Faccioli et al. (2010)

Wang and Takada (2009)

Adjustment of Si and Midorikawa (19992000) for stations HKD100 and CHB022

Bradley (20102013)

Modified coefficients of Chiou and Youngs (2008)

Chiou et al. (2010)

New terms for Chiou and Youngs (2008)

Zhao (2010) & Zhao and Gerstenberger (2010)

New terms for Zhao et al. (2006)

Atkinson and Boore (2011)

New terms for Boore and Atkinson (2008), Atkinson and Boore (2006) and Atkinson (2008)

Bommer et al. (2012)

Coefficients for Akkar and Bommer (2010) for 6 periods from 0.00 to 0.05s

McVerry and Holden (2014)

Modified terms for McVerry et al. (2006)

Pasyanos (2015)

Introduced 2D attenuation variations into Atkinson and Boore (2006)

Lee et al. (2016b)

Modify Lee (1995) for Vrancea earthquakes using model of Lee et al. (2016a)



Table 6.7: Non-parametric ground-motion models, i.e. models without an associated close-form equation, which are more difficult to use within seismic hazard assessments


Schnabel and Seed (1973) Western North America
Katayama (1982) Japan
Anderson and Lei (1994) Guerrero, Mexico
Lee et al. (1995) California
Emami et al. (1996) Western North America
Anderson (1997) Guerrero, Mexico
Fajfar and Perus (1997) Europe & Middle East
Garcia and Romo (2006) Subduction zones
Pathak et al. (2006) India
Güllü and Erçelebi (2007) Turkey
Ahmad et al. (2008) Europe & Middle East
Günaydin and Günaydin (2008)Northwestern Turkey
Cabalar and Cevik (2009) Turkey
Perus and Fajfar (20092010) Worldwide
Kuehn et al. (2011) Worldwide shallow crustal
Tezcan and Cheng (2012) Worldwide shallow crustal
Hermkes et al. (2014) Europe and Middle East
Gandomi et al. (2016) Iran
Thomas et al. (2016a) Worldwide shallow crustal
Thomas et al. (2016b) Worldwide shallow crustal
Tezcan et al. (2017)Western North America


1This may be an empirical GMPE because it is based on broadband velocity records from which acceleration time-histories are generated by ‘real-time simulation’. This could just mean differentiation.

2This may be an empirical GMPE because it is based on broadband velocity records from which acceleration time-histories are generated by ‘real-time simulation’. This could just mean differentiation.

3This model is derived from both observations and simulations but most of the data, especially for large magnitudes, are simulated hence listed here.